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Introduction 

Artificial Intelligence, in modern understanding, is the use of 
computers and computing power to perform tasks previously 
known to be only possible by a human. Until recently, there 
has not been enough processing capability to allow for these 
activities. Now, developments in computing capabilities have 
allowed for the prospering of artificial intelligence (AI). AI 
has had a pronounced effect on the manufacturing industry by 
allowing it to make sense of the large amounts of data 
generated by sensors and other monitoring devices. This data, 
known as Big Data, is too dense to be processed by solely 
human intuition. However, by using machine learning (ML), 
a subset of AI, trends, and patterns can be discovered and 
leveraged to the industry’s benefit. Any manufacturing setting 
puts its occupants in a certain degree of danger. Mitigating 
that danger is critical in any scenario, but especially in the 
environment of a makerspace. Makerspaces, by nature, are 
open to a wider spectrum of users with diverse skill sets and 
backgrounds than a typical industrial environment. Ensuring 
that even the most novice user can safely access, train, and 
utilize the equipment in the space is paramount. One of the 
many objectives that makerspaces serve is to lower the 
barriers of entry and access to prototyping/fabrication 
equipment. This paper presents novel approaches by which 
makerspaces could leverage the wide accessibility of AI tools, 
IoT sensors, and computation power to better achieve their 
mission and serve their stakeholders.  

Background 

Over the last decade, the popularity of makerspaces has 
increased dramatically. Various factors, such as the advent of 
rapid prototyping and changes in academic culture, have 
allowed for their prosperity. Such growth introduces 
challenges that may have been unimportant otherwise. For 
example, makerspaces see many people of many different 
backgrounds [1]. The diversity of these backgrounds, while 
advantageous in bringing forth different ideas and solutions, 
creates issues when establishing a baseline body of 
knowledge shared by the entire space. Without knowing how 
much everyone knows, it can be difficult to catch cases that 
fall through the cracks. In the best of cases, this can lead to 

broken equipment and reduced functionality to allow for 
repairs; in the worst cases, serious injury can be incurred. 

The manufacturing industry has largely the same problem to 
deal with. Different workers from different walks of life all 
need to be able to use machinery safely and effectively. This 
is typically done through comprehensive training and careful 
education, both formal and practical, on best practices. 
Makerspaces do this as well; however, it is more difficult for 
them to reach the same level of comprehension due to the 
variety of backgrounds they encounter. While in 
manufacturing, the same part or component, or mechanism is 
made repeatedly, makerspaces see a much wider range of use. 
The best practice for one project may not necessarily be the 
best practice for another. This makes it more difficult to guide 
users on how the equipment should be used in the most 
suitable way. 

One means of expanding a makerspace’s body of knowledge 
is through the use of big data and machine learning. By 
collecting information from machines and using that 
information to train models to recognize inefficient or 
damaging behavior, many of the issues preventing more 
generalized use can be addressed. The manufacturing industry 
has made ample use of machine learning in various 
applications, including condition monitoring and predictive 
maintenance, image detection, and energy efficiency. With 
minor alterations, makerspaces could see a similar benefit 
from the technology. 

There are several provisions in place to ensure the safety of 
users. Advanced fabrication equipment like laser cutters, 
CNC machines, etc. includes safety interlocks and emergency 
stops. However, these safety features are not standard on all 
equipment used in makerspaces. Rigorous training sessions 
could prepare the end-user for safe use of the machine but 
cannot guarantee zero accidents. Makerspace staff also 
provide a line of defense against safety incidents by serving 
to monitor operations and tool usage within the space and 
correcting the user when necessary. However, humans are 
prone to making errors and hence a non-intrusive support 
system, comprised of sensors and paired with machine 
learning models can be very helpful in a makerspace. 

In addition to assisting makerspaces in providing a safe 
environment for users, artificial intelligence can help 



      
 

makerspaces operate with greater efficiency. Machines 
require regular maintenance to perform their duties without 
incident. Without knowing the exact state of the equipment, 
maintenance must be done based on when the previous 
maintenance was done and the aggregate operational time of 
the device. While this ensures the machine stays operational, 
it may result in servicing being done more often than strictly 
necessary. This double affects the makerspace, both by 
consuming resources more frequently than required and 
requiring the machine to be shut down more often than 
needed. Machine learning enabled predictive analytics can 
inform staffers about the state of the machine. In doing so, it 
allows them to make more informed decisions about when to 
perform maintenance. This saves resources involved in the 
maintenance and keeps the functionality of the space as high 
as possible.  

The authors leveraged the Vertically Integrated Projects (VIP) 
program at Georgia Tech to develop intelligent systems and 
tools to manage and maintain makerspaces. Undergraduate 
students from different majors and academic standing receive 
an opportunity to work with graduate students and faculty 
while receiving elective research credits. This paper presents 
some of the work conducted by these teams in the past few 
semesters. More information about this team is available here: 
https://www.vip.gatech.edu/teams/vx4  

Literature Review 

An important aspect of any manufacturing industry is 
maintaining the machinery used to create a product. 
Maintenance takes time and money away from production, so 
minimizing the amount of maintenance needing to be done is 
in the interest of all manufacturing industries. One method 
that allows manufacturers to better determine how and when 
maintenance needs doing is condition monitoring. Condition 
monitoring involves using sensors to actively track the 
operation of a machine and assess whether faults have taken 
place or components are becoming worn. In their doctoral 
thesis [2], Mabrouka Baqqar utilized data collected from 
operating parameters to detect broken tooth faults in 
gearboxes. To do this, three different artificial intelligence 
models were trained to recognize deviations in current, load, 
and temperature from normal. These AI models were a 
general regression neural network, a back propagation neural 
network, and an adaptive neuro-fuzzy inference system. Each 
was successful in their training and recognition of abnormal 
behavior.  

Gearboxes are necessary for many industrial applications to 
suit the needs of the process. Due to their ubiquity, it is 
important to know when faults appear to address them as 
quickly as possible to minimize machine downtime. Most 
applications use vibratory or acoustic data to detect these 
faults, requiring additional sensors [3][4][5]. Consequently, 
additional complexity and cost are introduced to the machine. 
Baqqar’s approach is unique in this respect. By leveraging the 
operating parameters as opposed to using external sensors, 

they accomplish the goal of fault detection without additional 
complication.  

While makerspaces don’t bear the burden of per-unit 
production cost, they do share the concern for minimizing 
machine downtime. The longer a machine is down, the longer 
the space is not operating at full functionality. For this reason, 
makerspaces have a vested interest in this kind of technology. 
Furthermore, an approach that does not require modification 
of equipment or the purchasing of additional sensors is well 
suited for a makerspace environment, as it minimizes the 
overhead required. This allows those costs to be utilized 
elsewhere, such as by increasing capacity or hiring additional 
staff. Additionally, by detecting faults as they occur, higher 
consequence failures are avoided, thereby improving the 
safety of the space. 

Another area of manufacturing that has benefitted from the 
use of machine learning has been quality control. Defects of 
some components can be microscopic while still having an 
enormous impact on the final product, and technicians can 
miss such small deviations. To combat these errors, the advent 
of image detection has been a boon. This technology has been 
applied by Weimer et al. [6]. In their paper, the team utilized 
a convolution neural network (CNN) for industrial inspection 
for defects, tweaking the setup along with the width and depth 
parameters. Their choice to use a CNN here was not arbitrary. 
Previous applications of image detection in this field require 
manual feature selection. For known defects, this works fine; 
however, if new kinds of defects appear or are present in 
various orientations or sizes, a new feature set must be 
defined. In these events, a CNN has the advantage of not 
requiring a manual definition of features. Instead, the CNN 
“automatically generates meaningful features…with minimal 
human interaction.” 

Unlike the manufacturing industry, makerspaces have little 
specific concern with defects in parts. Due to the variety of 
projects that makerspaces witness, it is uncommon for 
microscopic flaws in a part to have an effect on the project 
being worked on. However, makerspaces can still benefit 
from technologies like image detection for other applications. 
Training of staff typically requires a demonstration of proper 
use of a piece of machinery, with proof given via some part 
made to certain specifications. In these instances, image 
detection could be able to recognize when parts are out of spec 
or take note of signs that improper methods have been used. 
Alternatively, image detection can be used to identify 
improper machine use in real-time and alert staff to address 
the issue. Practices like these would serve a makerspace by 
mitigating the risk of broken machinery or harmed staff or 
users.  

To this last point above, machine learning is used in some 
manufacturing environments to sense the surroundings of 
industrial robots. Industrial robots typically operate on strict 
paths with little ability to alter their movements to avoid 
obstacles. The addition of sensory capabilities would allow 
them to work better in collaboration with humans and prevent 
workplace accidents. This sensory ability is referred to as 
machine vision by Golnabi and Asadpour [7]. Furthermore, 



      
 

Kuts et. al and Bexten et. al. compare and evaluate different 
means of detection and planning related to machine vision for 
industrial robots in their works [8] [9]. The parallels between 
machine vision applied to industrial robots and its 
applications for makerspaces are clear. Makerspaces regularly 
involve people interacting with potentially dangerous 
equipment. To be able to sense when people are in harm’s way 
and dissuade users from continuing the unsafe operations in 
such scenarios would improve the safety of these 
environments. 

AI has seen commercial success in industrial applications 
outside of the manufacturing sector. Hassanaly discusses 
various inclusions of AI/ML in the construction industry, as 
well as the benefits it provides for its use as well as the 
potential risks and how they can be mitigated [11]. Similarly, 
Voxel AI, a tool by which safety incidents can be mitigated 
and reported, saw success in its implementation in 
Americold’s California distribution center [12]. These 
applications function by observing work through a system’s 
security cameras and identifying unsafe behavior, such as the 
improper lifting of pallets or speeding equipment. 

The ability to process large amounts of data generated from 
equipment and find patterns that would otherwise go 
unnoticed allows machine learning to assist people outside of 
the traditional manufacturing industry. In the domestic area, 
Sense technologies allow homeowners to monitor their 
electricity usage and make more informed decisions about 
how power is being consumed [10]. Sense integrates into the 
circuit breaker of a building to monitor energy use. Through 
machine learning, it gains the ability to determine which 
energy signatures are related to household devices. 
Furthermore, it can recognize patterns in usage and alert the 
owner to abnormal appliance behavior. In doing so, it can save 
the homeowner money by alerting them to issues before more 
disastrous circumstances present themselves. 

Though not typically designed for it, technologies like Sense 
could serve the makerspace community. Makerspaces house 
many pieces of equipment that require relatively large 
amounts of power to operate. Being able to track which 
devices are used frequently can enable a space to make more 
informed decisions about what equipment is popular, 
allowing for more informed decisions regarding the 
expansion of functionality. Additionally, as with [2], 
detection of uncharacteristic behavior indicative of faults 
would be beneficial. Moreover, having a better sense of how 
power is being consumed gives makerspaces the ability to be 
more energy conscious in their purchasing. In doing so, 
money is saved, which could be reallocated to other services 
as needed. 

The existing applications of AI/ML from literature are all 
designed for applications within the industry or commercial 
settings. Previous researchers [13-16] presented a thorough 
literature review and inspiring examples of how IoT sensors 
could be used in makerspaces to collect data. However, the 
current knowledge gap is how to extend the applications of 
sensors to collect data and leverage AI/ML for useful 
purposes to better serve the makerspace needs. The 

subsequent sections present two case studies and future work 
that could help makerspace managers/administrators, or 
developers leverage these novel technologies to support 
makerspaces.  

Case Study One: Detection of Improper Bandsaw Use 
Makerspaces often see many users in a single day. While 
ample utilization of the space can hardly be complained 
about, it often leads to issues when the number of users 
outpaces the supervisors’ ability to effectively manage safety. 
To address this issue, a team pursued the goal of improving 
makerspace safety by detecting when a user’s hands were 
dangerously close to the blade of a bandsaw without human 
assistance.  
To capture images, the team used a cell phone recording video 
positioned above the bed of the bandsaw pointed downwards. 
The video would then undergo preprocessing, involving 
grayscaling the images, reducing the resolution, and 
increasing the contrast. Each frame of the video would then 
be subject to a machine learning model, and safety judgment 
would be assigned. In the event of unsafe usage, the model 
would alert an on-staff Prototyping Instructor (PI) to the 
transgression. After evaluating several options, the team 
decided to use a Microsoft HoloLens to inform the PI. A 
flowchart illustrating the process is shown in Fig. 1. 
 Initially, the team attempted to train a CNN by taking videos 
of the bandsaw being used both properly and improperly. 
These videos were labeled as either “safe” or “unsafe” and 
given to the model to train it. However, instead of learning 
what aspects of the footage constituted safe versus unsafe 
behavior, the CNN only memorized the training set and made 
safety judgments based on the sequential position of frames. 
When tested in a live setting, the CNN failed to generalize and 
incorrectly identified all use of the bandsaw as safe. From 
there, the team changed its approach. It implemented the use 
of YOLO, an “extremely fast and accurate” object detection 
system [17], using it to identify the position of the user’s 
hands and the location of the bandsaw blade. 

 
Fig. 1: Flowchart describing the information flow 

YOLO was trained to recognize these items by annotating 



      
 

video footage using CVAT, as shown in Fig. 2. The annotated 
images were then uploaded to Roboflow to generate a dataset 
to be used to train the YOLO model. The dataset was 
uploaded to Google Colab to attempt to train the YOLO 
model. 

 
Fig. 2: Annotations are drawn using CVAT.  

This project is currently a work in progress. Next steps would 
involve implementing the model in a real-time environment, 
with logic in place to evaluate whether the relative position of 
the blade and hands is unsafe. The research team engaged 
with the Institute’s Environment & Health Safety office as 
well as the Institute Risk Management leadership to explore 
the feasibility of implementing the proposed approach to 
augment safety within the Institute’s makerspace. Both the 
groups expressed strong support for this approach as it 
enhances user safety by improving the duty of care provided 
by the makerspace to its users. However, they recommended 
some critical design aspects that should be central to the final 
implementation of this solution. These were: 
1. Avoid physical alterations to the equipment: Avoid 

impairing the regular operation of the machine and 
ensure proper risk assessment is conducted to make sure 
any sensors/actuators/alarms added on or around the 
equipment do not cause any harm to the user in case of 
unintended failures of the system.  

2. Be mindful of user privacy and only collect/analyze data 
that is essential  

3. Ensure that the user/staff notification system does not 
distract the user or other users in the space.   

4. Instead of a binary gauge of detecting safe vs unsafe 
operations, identify ways to track near misses which 
would help train future users 

5. Implement ways to educate the end user that the AI 
support elements are only tertiary lines of defense against 
accidents and users are solely responsible to ensure their 
own safety.  

The primary advantage of the proposed machine vision-based 
safety monitoring system is that it can be placed outside of the 
bounds of the machine and placed in such a way that user’s 
face is not recorded. If the technology were to be integrated 
into the machine, it must be ensured that the safe use of the 
machine is not otherwise compromised. In their paper, 
Anastasi et. al. discusses how various standards for safe 
design and use of machinery from the European Union apply 
to AI/ML [18]. Furthermore, they examine how these 

standards might be revised to better cover machinery with 
embedded artificial intelligence. While such standards are for 
the EU  market, they provide guidelines for the general 
implementation of AI/ML in the manufacturing industry and 
would be relevant to the research discussed in this case study. 
Addressing the third point above, research into design of 
safety alerts/ alarm has been done; in their paper, Schlesinger 
et. al. investigate how alarm volume affects the cognition of 
clinicians performing patient-related duties while subject to 
distractors [19]. Similarly, Rayo et. al. studied the use of 
timbre to aid nurses in recognizing the category and urgency 
of alarms [20]. While this research is focused on the medical 
field, it is still applicable to users of heavy machinery; both 
groups require the participant to perform actions, sometimes 
more than one simultaneously, with care, the penalty for 
which could be bodily harm to themselves or others. 
In addition to designing alarms that don’t create unnecessary 
distraction, the concept of implementing tiered zones of safety 
is being discussed. Such zones would allow for failure modes 
that don’t involve harm befalling the user. Inclusion of such 
zones would be paired with lower-level alerts so that the 
danger of the use is accurately communicated to the user. This 
would serve to address the fourth point of the list above. 
While this research is focused on the use of a bandsaw, the 
applications of it can be generalized to other pieces of 
equipment. Any machinery that involves the user interacting 
with or operating close to a cutting part would benefit from 
the research done here.  
Case Study Two: Characterization of Cut Path Aggressiveness 

CNC mills are often intimidating machines for new users in 
makerspaces. Adequate training itself is no substitute for 
hands-on experiences with trial and error and hence it is 
possible for the machine to be used improperly, or rather in a 
non-optimal fashion. In such events, the best-case scenario 
involves tool wear and inefficient work, resulting in lost time 
or broken equipment; in the worst cases, the health and safety 
of the operator are at stake. For a makerspace, where the 
spectrum of the base knowledge and skills of the user varies 
widely, the challenge presented by the CNC can drive away 
potential users. In order to improve the safety of the user and 
improve the accessibility of the makerspace, an ML model 
was developed to leverage onboard sensors to classify how 
aggressively a CNC is being used, i.e., how intensely the 
cutting bit is being engaged. 
A flow chart describing the actions taken is shown in Fig. 3. 
Aggressiveness was assessed using ranges of feed-rates taken 
from G-Wizard, an online tool for choosing machining 
parameters. To gather training data, the author ran cuts of 
simple geometry, recording spindle power data as well as 
loads in the x, y, and z directions. Additionally, individual 
loads were combined to find the total load magnitude. This 
data was processed to remove unnecessary portions, such as 
startup and shutdown. Frequency features were generated 
through a Continuous Wavelet Transform (CWT), then 
reduced to increase the speed of the model. Reduction was 
done using Pearson Correlation and Mutual Information (MI) 
scores. After selection, the remaining features were used to 



      
 

train several different ML models. These models include 
Logistic Regression, K-Nearest Neighbors (KNN), Decision 
Trees, Random Forests, and Multi-Layer Perception (MLP) 
Neural Network. Because each of these models uses different 
hyperparameters, optimization was done by comparing F1 
scores after changing various values.  

 
Fig. 3: Flow chart describing the actions taken by the author in 

conducting the research into CNC aggressiveness. 

Once the models were trained, they were subject to two tests. 
The first test only involved different cutting geometry, while 
the second also varied the cutting parameters like width and 
depth of cut. This second test was done to mimic the different 
conditions a CNC machine would be subject to in a 
makerspace environment, where cutting parameters change 
depending on the project. In each test, the models were 
compared using the area under the Receiver Operator 
Characteristic (ROC) curves. Under the conditions of a 
makerspace, the models performed poorly, so a Principal 
Component Analysis (PCA) was performed to reduce the 
noise. Using a PCA with n=2, Logistic Regression functioned 
the best. Table 1, shown below, shows how including this 
PCA improved the models’ predicting abilities.  
 
Table 1: Areas under ROC curves for different ML models at different cut 

aggressiveness, before and after applying PCA. The cells in green mark 
the instances of PCA improving the prediction. 

 
The results show that it is possible to predict cut 
aggressiveness using just the onboard sensors of a CNC. 
Makerspaces have ample use for this technology in order to 
reduce the barriers of entry to the machine as well as improve 
the overall safety of the space, as is shown in Fig. 4. A more 
varied training set is needed to improve the accuracy of the 
model, including tool wear, workpiece material, and a wider 
spectrum of feed rate and width of cut. 

 
Fig. 4: Flow chart depicting the potential use cases of the aggressiveness 

classification. 

While this specific research focuses on identifying 
aggressiveness from machine parameters, deeper implications 
exist. For example, detecting the work done by the machine 
through the built-in sensors could be used for the 
identification of materials. From there, recommendations 
could be made for cutting parameters, or warnings could be 
given for improper or dangerous use before dire consequences 
are encountered. Similarly, with a given material, the 
improper setup could be noted before danger is encountered. 
This would serve to both improve the safety of the space as 
well as introduce newer users to higher-level concepts of 
CNC milling as they encounter them. By having a specific 
event with which to remember them, users would be more 
likely to remember the concepts introduced than if they were 
abstractly mentioned during regular training. 

Conclusion 
Makerspaces are becoming commonly adopted across 
educational institutions as hubs for cross-disciplinary 
collaborative learning and innovation. Due to the cross-
disciplinary nature, users with diverse backgrounds and skills 
visit the makerspace.  In order to make makerspaces more 
accessible to this vast audience, it is necessary to lower the 
barriers to entry while enhancing the overall safety of the 
space. Recent developments in computing capabilities have 
made democratized access to AI tools and this paper 
presented specific case studies where it makes sense to 
leverage AI as a tool to support makerspace operations. 
Existing literature suggests the growing use of AI to support 
manufacturing operations for industrial and commercial 
needs. This paper presented inspiring examples of how free-
to-use AI tools could be used to develop technologies specific 
to makerspaces. An approach on how to use ML to confirm 
the user’s intent in machining and provide real-time 
actionable insight to the end-user was also presented. This 
approach can be used to make the machining operation safer 
for the user thus increasing its accessibility.  
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