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Introduction & Background 
Makerspaces are increasingly becoming a critical part of 
engineering programs worldwide [1]. Makerspaces provide 
unparalleled hands-on experiences for students. 
Understanding the interactions that occur in these spaces is 
critical to improving the engineering education. 
Understanding interactions in these spaces, especially student 
interactions with tools, is important in ensuring that all 
students find the entire space accessible. Visualizing students 
and tools in a makerspace as interacting groups using a 
directional graph and network analysis has had previous 
success [2, 3]. This work follows that, drawing inspiration 
from ecology’s study of plant-pollinator bipartite networks. 
Here we visualize tools as analogous to plants and students to 
pollinators [4, 5]. Modularity analysis is primarily used by 
ecologists to identify co-dependent groups of plants and 
pollinators to map interactions and understand intricate 
dependencies between the two groups [5]. Prior work has 
shown that translating ecosystem characteristics to human 
networks can improve their sustainability [6, 7] and resilience 
[8, 9]. Co-dependencies found here between tools and student 
groups suggest that future work could use modularity analysis 
to improve the makerspace experience of all students but 
especially those who are underrepresented.  
 
Visualizing such a space as a network is a commonly found 
approach in social network analysis, where “actors” interact 
with “events” and create an interaction network that can be 
explored [10]. NASA for example used this approach to 
determine innovation networks for their space app challenge, 
allowing them to identify “catalyst” and barriers to innovation 
that could aid or impede the challenge [11]. The approach has 
not yet been applied to engineering makerspaces outside of 
the authors’ preliminary investigations [3, 2]. A network 
model of makerspaces here is used to better understand co-
dependencies between different student groups and tools. 
 
Several studies have focused on barriers to entry and how the 
makeups of different spaces impact their usage. Expanding on 
that work, here we use a quantitative network analysis 
method, called a modularity analysis, to evaluate how 
different groups of students (major, race, and gender) interact 

with tools. One university is used as case study for the 
approach. The results provide insight as to how demographics 
affect a student’s makerspace interactions. 

Methodology 
School A serves as the case study for this approach, an R1 
university with a large engineering college in the United 
States. The makerspace serves all the engineering disciplines 
and is centrally located for engineering students on campus. 
The makerspace is equipped with a conventional array of 
tooling, including 3D printers, metal tools, wood tools, 
electronics tools, craft tools, work areas, hand tools, etc. The 
makerspace is managed by full-time staff and employs 
student workers. Participants for the study here were recruited 
via flyers placed throughout the makerspace and with emails 
and course website announcements distributed to students in 
classes known for their high makerspace use.  
 
Data was collected with an end of semester survey distributed 
to all students who completed makerspace training. The 
survey requested information regarding student 
demographics, past making experiences, academic 
information, and tool usage data. The surveys were 
distributed at the end of the semester, taking students roughly 
20 minutes. Students were compensated $20 for their 
completed survey. The survey supplied self-reported tool 
usage data is the primary input for the network analysis. This 
includes information such as the tools students used, for what 
purposes, and the order used. The tools are grouped into 
general categories as seen in Table 1. The student 
demographic data and tool use responses are transferred to an 
interaction network like the one found in Fig. 1. The 
interaction network includes a one for when a student 
interacted with a tool and a zero when the student did not 
interact with a tool.  
 
The individual students in the matrix of Fig. 1c were then 
condensed into demographic groups. For example, if students 
1 and 3 in the sample network makerspace in Fig. 1 were both 
Hispanic students, their interactions were averaged for the 
tools they used. The analysis here uses a 10% usage as a cutoff 
for average interactions, meaning: if 10% of the Hispanic 
students had shared interactions then the Hispanic student 



 
 

group would have an interaction value of one for that tool. If 
it was less than 10%, it would receive a value of zero. This 
cutoff ensures that one student with one interaction doesn’t 
skew the interactions for the entire student group.  
 
Table 1: Tool selection included in survey with the sub tools that are 
encompassed by each category. 

Tool Category Specific Tools Included 

(1) 3D Printing 
Ultimaker 3D Printer, Formlabs 
Form 2 Printer, Stratasys 3D Printer, 
3D Scanner Arm 

(2) Metal Tools 

Angle Grinder, Band Saw, CNC 
Metal Mill, Manual Mill, Manual 
Lathe, Drill Press, Belt Sander, 
Polishing Wheel, Table Vice 

(3) Laser Cutter Laser Cutter 

(4) Wood Tools 

Band Saw, Belt Sander, Circular 
Saw, Miter, Jigsaw, Drill Press, CNC 
Wood Router, Router, Planer, Table 
Saw, Hammers, Measuring Tape, 
Hand Saw, Dremel 

(5) Handheld Tools 
Pliers, Vice Grips, Clamps, Screw 
Drivers, Hand Drills, Chisels, Tin 
Snips 

(6) Electronic Tools 
Circuit Board Plotter, Multimeter, 
Power, Supply, Soldering Station, 
Oscilloscope, Logic Analyzer 

(7) Studied 
Studied, Hung Out, Met with a 
Group 

(8) Got Help 

Got Help from Makerspace 
Volunteer, Got Help from Someone 
Who Wasn’t a Makerspace 
Volunteer, Gave Help  

(9) Crafting 

Embroidery Machine, Sewing 
Machine, Vinyl/Paper Cutter, X-Acto 
Knife, Scissors, Glue Gun, Wire 
Cutters 

(10) CAD Station 
Cad Station, Workbench, 
Whiteboards  

(11) Paint Booth Paint Booth 
 

Matrices for each demographic grouping were put through the 
Newman algorithm (Eq. 1) modularity analysis to find tool 
usage modules [2]. In Eq. 1, E represents the total number of 
tool-student connections present in the bipartite adjacency 
matrix for the makerspace, Bij. The variables ki and dj provide 
the number of interactions each tool or student, respectively, 
has with other actors in the network. Finally, the tool and 
student module indices (gi and hj) are checked by function δ 
to determine whether any given pair of tool and student actors 
is assigned to the same module. If so, δ produces a value of 1, 
contributing to the overall Q of the network. If the two actors 
do not belong to the same module, δ becomes a 0, negating 
the effect of their relationship. The Newman/Leading 
Eigenvector method was used for the optimization in the 
modularity analysis, as the method generates a reproducible 
set of module assignments given consistent inputs [12]. 
Modules here are clusters of student-tool interactions that 
have minimal interactions outside their cluster. Module 

assignments for each interaction are found such that 
modularity is always maximized. Modules are added by 
repeating this process within each module, creating a new 
module subdivision only if it increases the modularity of the 
entire network [13]. Finally, optimal assignments are 
determined when no additional subdivisions exist that would 
result in an increase in modularity. 

 
Fig. 1: Sample Network Creation. a) Hypothetical makerspace network 

with students interacting with tools. b) graphic representation of the 
network space. c) final interaction network.  

Results & Discussion 
 
Table 2A: School A 2021 Tool Group Usage by Gender 

  Gender 
  Men Women Prefer not to say 
n 117 56 13 
3D Printers 59% 54% 69% 
Metal Tools 39% 34% 23% 
Laser Cutter 4% 2% 0% 
Wood Tools 8% 7% 15% 
Handheld tools 26% 18% 31% 
Electronics tools 16% 9% 15% 
Vinyl/paper cutter 0% 0% 8% 
Foam Cutter 0% 0% 0% 
Sewing Machine 0% 0% 8% 
Cad station 13% 7% 15% 
Studied 21% 11% 15% 
Got help 16% 20% 8% 
Paint Booth 2% 4% 0% 
Other 18% 18% 15% 

 
Table 2B: School A 2021 Tool Group Usage by Race/Ethnicity (W=White, 
A=Asian, B=Black, NA=Native American, H=Hispanic, and P=Prefer not 
to say) 

  Race 
  W A B NA H P 
n 119 34 3 4 39 11 
3D Printers 61% 53% 33% 75% 51% 45% 
Metal Tools 38% 38% 67% 25% 31% 27% 
Laser Cutter 3% 9% 0% 25% 5% 0% 
Wood Tools 9% 6% 0% 25% 8% 9% 
Handheld tools 25% 21% 33% 0% 26% 45% 
Electronics tools 14% 12% 0% 25% 18% 18% 
Vinyl/paper cutter 1% 0% 0% 0% 0% 0% 
Foam Cutter 0% 0% 0% 0% 0% 0% 
Sewing Machine 0% 0% 0% 0% 0% 0% 
Cad station 13% 15% 0% 0% 5% 9% 
Studied 18% 18% 67% 25% 21% 18% 
Got help 16% 29% 0% 0% 10% 9% 
Paint Booth 3% 3% 0% 0% 0% 0% 
Other 18% 15% 0% 25% 28% 27% 
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Table 2C: School A 2021 Tool Group Usage by Major (M=Mechanical, 
A=Aerospace, I=Industrial, B=Biomedical, E=Electrical, C=Computer, 
Na=No answer) 

   Major 

   M A I B E C Na 

n 90 8 23 9 17 5 34 

3D Printers 67% 25% 61% 89% 35% 20% 50% 

Metal Tools 49% 13% 61% 0% 0% 20% 24% 

Laser Cutter 4% 13% 0% 0% 0% 0% 3% 

Wood Tools 10% 13% 0% 0% 6% 0% 12% 

Handheld 
tools 

27% 25% 13% 11% 35% 20% 21% 

Electronics 
tools 

4% 0% 0% 11% 71% 40% 21% 

Vinyl/paper 
cutter 

0% 0% 0% 0% 0% 20% 0% 

Foam Cutter 0% 0% 0% 0% 0% 0% 0% 

Sewing 
Machine 

0% 0% 0% 0% 0% 0% 3% 

Cad station 13% 0% 9% 11% 12% 20% 9% 

Studied 17% 25% 4% 0% 35% 60% 18% 

Got help 17% 0% 17% 0% 24% 40% 18% 

Paint Booth 2% 13% 0% 0% 0% 0% 3% 

Other 13% 38% 13% 0% 18% 20% 32% 

 
Tables 2A-2C includes all the tool usage statistics for the 
various student demographic categories and tool groupings 
used to consolidate both portions of the interaction network. 
Instances where less than 10% of students within a 
demographic subset had an interaction with one of the tool 
groupings are highlighted in red. These are the student-tool 
pairings that did not meet the established usage threshold to 
constitute the presence of a link between the student group 
and the tool. A matrix like the one in Fig. 1c, depicting the 
bipartite network, is then Table 2 with the red cells replaced 
with a zero and the green cells with a one. 
 
The usage values in Tables 2A to 2C reveal the tool groups 
that were used most and least consistently across the three 
categories of demographics. 3D-printers, for instance, shows 
consistent use by all student subgroups (greater than 10% of 
each demographic). Conversely, usage for the vinyl/paper 
cutter only crossed the 10% threshold for a single student 
demographic (at 20% which was only for 1 out of 5 total 
students), computer engineering majors. The demographics of 
the students using 3D-printers and the vinyl/paper cutter 
clearly show that the 3D-Printer is a general use tool, and the 
cutter is a specialized tool in this makerspace. As such, we 
expect the modularity analysis of the network to assign very 
different functional roles to each of them. 

 
Fig. 2A: School A bipartite makerspace network and module assignments 
for various student demographic groupings: A) Gender B) Race C) Major. 
A connection between a student demographic group and a tool grouping 
indicates that at least 10% of that demographic interacted with that tool 

grouping. 

 

 
Fig. 3B: School A bipartite makerspace network and module assignments 
for various student demographic groupings: A) Gender B) Race C) Major. 
A connection between a student demographic group and a tool grouping 
indicates that at least 10% of that demographic interacted with that tool 

grouping. 



 
 

 
Fig. 4C: School A bipartite makerspace network and module assignments 
for various student demographic groupings: A) Gender B) Race C) Major. 
A connection between a student demographic group and a tool grouping 
indicates that at least 10% of that demographic interacted with that tool 

grouping. 

Fig. 2A-C show the three resulting networks (based on 
student gender, student race, and student major). Actors 
(student groups and tools) of the same color share a module 
and black lines represent connections between modules. Of 
the three demographics groupings, the major-based network 
(Fig. 2C) is the easiest to analyze. On the student side, the 
modules can be viewed as three general categories: the first 
module consisting of mechanics-based majors (aerospace and 
mechanical engineering), the second module consisting of 
electronics/devices-based majors (computer, electrical, and 
biomedical engineering), and the third module serving as 
something of a hybrid between the first two (only containing 
industrial engineering). The way the tools are slotted into 
these three modules offers some expected findings, wood and 
metal tools sharing a module with the mechanics-based 
majors, for example, and some unexpected findings. One such 
unexpected finding is the placement of the handheld tools, a 
category generally associated with high usages from 
aerospace and mechanical engineering majors, in the 
electronics-based majors’ module. Further knowledge of 
School A’s makerspace would help suggest that this module 
assignment is a result of the handheld tool checkout desk 
being located much closer to the electronic work benches than 
to the wood or metal tool workshops. 
 
A final point of interest from this demographic-based 
modularity analysis is the Q values (Eq. 1) for each network. 
As discussed, Q is a measure of how modular a network is. 
While it is difficult to establish performance expectations 
based on Q, there is some value in the comparison between 
the difference networks. Conceptually, certain demographic 

categorizations make more sense to display high modularity 
values. A bipartite network based on student major, for 
example, could be expected to contain the presence of a 
modular structure, with majors grouped with the tools related 
to their respective specializations. Gender and race, however, 
would ideally display far lower degrees of network 
modularity. For these sorts of demographics, high values of 
modularity might suggest the existence of some inequity 
regarding how different students feel comfortable using the 
space. This discussion is supported by Table 2, where the 
major-based network displays the highest Q value (it is worth 
noting that the module assignments for these networks were 
generated to optimize Q) of the three demographics.  
 
Table 2: Modularity (Q, Eq. 1) of School A makerspace networks by 
demographic categorization. 

Demographic 
Categorization 

Q (Modularity) 

Gender 0.099 

Race 0.126 

Major 0.160 

  
Q can also be used as the basis for an objective function to 
design a makerspace from scratch using a computational 
model, but implementation would likely differ for different 
demographics. For demographics like gender and race, being 
highly modular might be a negative as you would want to see 
the same usage patterns regardless of the gender/race. Larger 
sample sizes are needed for underrepresented STEM groups 
however to make stronger conclusions. The results shown 
here however do suggest that special events specifically 
targeting tools that are causing modularity in specific student 
subsets could be used in future work to minimize overall 
modularity. Future work will investigate this further, to 
determine if makerspace design can be informed by 
minimizing modular characteristics. Prior work has found 
increasing modularity to correlate with increasing resilience 
of both human and biological networks, but this trend is 
highly dependent on the network type [14, 15]. Water 
distribution systems (WDSs) are one example of an exception 
to this correlation, as highly modular WDSs are more likely 
to leave entire communities disconnected as a result of a 
system disturbance [14]. Because of this variety in the effect 
of modularity on system performance, more research would 
need to be done to establish the nature of the relationship 
between modularity and makerspaces, specifically with 
students consolidated by major. Ultimately, the desired effect 
of makerspace design on modularity (Q) will likely depend on 
administrative preferences, i.e., whether it is more desirable 
for a makerspace to display more homogeneous usage across 
all majors or whether it is preferable that certain modules of 
tools and students are able to continue functioning despite a 
disturbance within a different module. 

Conclusion 
The work discussed represents the first time that 
demographic-based modularity analysis has been conducted 
on university makerspaces. While largely dependent on the 



 
 

survey data used to make the bipartite networks, the results 
for School A serve as an example of how this technique could 
offer a novel means of viewing these makerspaces. At the 
broadest level, this approach provides insight into the ways in 
which different subsets of students use the space, both in 
terms of raw usage statistics and in terms of the module 
assignments for both student and tool groupings. 
 
Identifying the Q values (a representative measure of how 
modular the structure of a given network is) for each network 
can also help to establish a baseline from which meaningful 
design changes could be made. For the race and gender-based 
networks, successful makerspace design would see a decrease 
in Q, indicating that these two demographics do not influence 
how students are interacting with the makerspace. When 
looking at the network from a major perspective, the desired 
change on Q is less apparent, and more work will need to be 
done to see whether increasing the modularity in these 
networks does help with system resilience (maintaining high 
levels of makerspace operation despite failures of certain 
tools), as has been observed in some biological and manmade 
networks, or if higher modularity represents an undesirable 
separation in the space between different majors and the tools 
they tend to use. 
 
Future work to expand on this research will first use the 
module assignments to determine the functional roles of 
student and tool groupings. This will help identify the degree 
to which types of actors within the makerspaces are 
responsible for connecting other actors, both within and 
between modules. Furthermore, the implementation of actual 
design changes in operational makerspaces and a repeating of 
the analysis done here will allow for a better understanding of 
how makerspaces might be changed to affect their 
performance, and how the changes would manifest 
themselves through the lens of modularity. 
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